首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   948篇
  免费   54篇
  2023年   6篇
  2022年   6篇
  2021年   30篇
  2020年   16篇
  2019年   14篇
  2018年   28篇
  2017年   26篇
  2016年   40篇
  2015年   63篇
  2014年   73篇
  2013年   70篇
  2012年   87篇
  2011年   85篇
  2010年   53篇
  2009年   31篇
  2008年   69篇
  2007年   65篇
  2006年   32篇
  2005年   39篇
  2004年   47篇
  2003年   34篇
  2002年   37篇
  2001年   3篇
  1999年   7篇
  1998年   12篇
  1997年   4篇
  1996年   2篇
  1995年   7篇
  1994年   2篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1982年   1篇
排序方式: 共有1002条查询结果,搜索用时 31 毫秒
91.
92.
Studies on the inhibitory mechanism of acetogenins, the most potent inhibitors of mitochondrial complex I (NADH-ubiquinone oxidoreductase), are useful for elucidating the structural and functional features of the terminal electron transfer step of this enzyme. Previous studies of the structure-activity relationship revealed that except for the alkyl spacer linking the two toxophores (i.e., the hydroxylated THF and the gamma-lactone rings), none of the multiple functional groups of these inhibitors is essential for potent inhibition. To elucidate the function of the alkyl spacer, two sets of systematically selected analogues were synthesized. First, the length of the spacer was varied widely. Second, the local flexibility of the spacer was specifically reduced by introducing multiple bond(s) into different regions of the spacer. The optimal length of the spacer for inhibition was approximately 13 carbon atoms. The decrease in the strength of the inhibitory effect caused by elongating the spacer from 13 carbons was much more drastic than that caused by shortening. Local flexibility in a specific region of the spacer was not important for the inhibition. These observations indicate that the active conformation of the spacer is not an extended form, and is not necessarily restricted to a certain rigid shape. Moreover, an analogue in which a spacer covering 10 carbon atoms was hardened into a rodlike shape still maintained a potent inhibitory effect. Our results strongly suggest that the spacer portion is free from steric congestion arising from the putative binding site probably because there is no cavity-like binding site for the spacer portion. The manner of acetogenin binding to the enzyme may not be explained by a simple "key and keyhole" analogy.  相似文献   
93.
Insulin-like growth factor-I (IGF-I) receptors and insulin receptors belong to the same subfamily of receptor tyrosine kinases and share a similar set of intracellular signaling pathways, despite their distinct biological actions. In the present study, we evaluated T cell death-associated gene 51 (TDAG51), which we previously identified by cDNA microarray analysis as a gene specifically induced by IGF-I. We characterized the signaling pathways by which IGF-I induces TDAG51 gene expression and the functional role of TDAG51 in IGF-I signaling in NIH-3T3 (NWTb3) cells, which overexpress the human IGF-I receptor. Treatment with IGF-I increased TDAG51 mRNA and protein levels in NWTb3 cells. This effect of IGF-I was specifically mediated by the IGF-IR, because IGF-I did not induce TDAG51 expression in NIH-3T3 cells overexpressing a dominant-negative IGF-I receptor. Through the use of specific inhibitors of various protein kinases, we found that IGF-I induced TDAG51 expression via the p38 MAPK pathway. The ERK, JNK, and phosphatidylinositol 3-kinase pathways were not involved in IGF-I-induced regulation of TDAG51. To assess the role of TDAG51 in IGF-I signaling, we used small interfering RNA (siRNA) expression vectors directed at two different target sites to reduce the level of TDAG51 protein. In cells expressing these siRNA vectors, TDAG51 protein levels were decreased by 75-80%. Furthermore, TDAG51 siRNA expression abolished the ability of IGF-I to rescue cells from serum starvation-induced apoptosis. These findings suggest that TDAG51 plays an important role in the anti-apoptotic effects of IGF-I.  相似文献   
94.
To better understand the control of T helper (TH) 1-expressed genes, we compared and contrasted acetylation and expression for three key genes, IFNG, TBET, and IL18RAP and found them to be distinctly regulated. The TBET and the IFNG genes, but not the IL18RAP gene, showed preferential acetylation of histones H3 and H4 during TH1 differentiation. Analysis of acetylation of specific histone residues revealed that H3(Lys-9), H4(Lys-8), and H4(Lys-12) were preferentially modified in TH1 cells, suggesting a possible contribution of acetylation of these residues for induction of these genes. On the other hand, the acetylation of IL18RAP gene occurred both in TH1 and TH2 cells the similar kinetics and on the same with residues, demonstrating that selective histone acetylation was not universally the case for all TH1-expressed genes. Histone H3 acetylation of IFNG and TBET genes occurred with different kinetics, however, and was distinctively regulated by cytokines. Interleukin (IL)-12 and IL-18 enhanced the histone acetylation of the IFNG gene. By contrast, histone acetylation of the TBET gene was markedly suppressed by IL-4, whereas IL-12 and IL-18 had only modest effects suggesting that histone acetylation during TH1 differentiation is a process that is regulated by various factors at multiple levels. By treating Th2 cells with a histone deacetylase inhibitor, we restored histone acetylation of the IFNG and TBET genes, but it did not fully restore their expression in TH2 cells, again suggesting that histone acetylation explains one but not all the aspects of TH1-specific gene expression.  相似文献   
95.
Previous studies showed that biotin enhanced glucose-induced insulin secretion. Changes in the cytosolic ATP/ADP ratio in the pancreatic islets participate in the regulation of insulin secretion by glucose. In the present study we investigated whether biotin regulates the cytosolic ATP/ADP ratio in glucose-stimulated islets. When islets were stimulated with glucose plus biotin, the ATP/ADP ratio increased to approximately 160% of the ATP/ADP ratio in islets stimulated with glucose alone. The rate of glucose oxidation, assessed by CO(2) production, was also about 2-fold higher in islets treated with biotin. These increasing effects of biotin were proportional to the effects seen in insulin secretion. There are no previous reports of vitamins, such as biotin, directly affecting ATP synthesis. Our data indicate that biotin enhances ATP synthesis in islets following the increased rate of substrate oxidation in mitochondria and that, as a consequence of these events, glucose-induced insulin release is reinforced by biotin.  相似文献   
96.
97.
Advanced glycation end products (AGE)-modified proteins as well as oxidized-LDL (Ox-LDL) undergo receptor-mediated endocytosis by CHO cells overexpressing CD36, a member of class B scavenger receptor family. The purpose of the present study was to examine the effects of glycolaldehyde-modified BSA (GA-BSA) as an AGE-ligand and Ox-LDL on leptin expression in adipocytes. GA-BSA decreased leptin expression at both protein and mRNA levels in 3T3-L1 adipocytes and mouse epididymal adipocytes. Ox-LDL showed a similar inhibitory effect on leptin expression in 3T3-L1 adipocytes, which effect was protected by N-acetylcysteine, a reactive oxygen species (ROS) inhibitor. Binding of (125)I-GA-BSA or (125)I-Ox-LDL to 3T3-L1 adipocytes and subsequent endocytic degradation were inhibited by a neutralizing anti-CD36 antibody. Furthermore, this antibody also suppressed Ox-LDL-induced leptin down-regulation. These results clarify that the interaction of GA-BSA and Ox-LDL with CD36 leads to down-regulation of leptin expression via ROS system(s) in 3T3-L1 adipocytes, suggesting that a potential link of AGE- and/or Ox-LDL-induced leptin down-regulation might be linked to insulin-sensitivity in metabolic syndrome.  相似文献   
98.
We recently cloned a trehalose transporter gene (Tret1) that contributes to anhydrobiosis induction in the sleeping chironomid Polypedilum vanderplanki Hinton. Because trehalose is the main haemolymph sugar in most insects, they might possess Tret1 orthologs involved in maintaining haemolymph trehalose levels. We cloned Tret1 orthologs from four species in three insect orders. The similarities of the amino acid sequence to TRET1 in P. vanderplanki were 58.5–80.4%. Phylogenetic analysis suggested the Tret1 sequences were conserved in insects. The Xenopus oocyte expression system showed apparent differences in the Km and Vmax values for trehalose transport activity among the six proteins encoded by the corresponding orthologs. The TRET1 orthologs of Anopheles gambiae (Km: 45.74 ± 3.58 mM) and Bombyx mori (71.58 ± 6.45 mM) showed low trehalose affinity, whereas those of Apis mellifera (9.42 ± 2.37 mM) and Drosophila melanogaster (10.94 ± 7.70 mM) showed high affinity. This difference in kinetics might be reflected in the haemolymph trehalose:glucose ratio of each species. Tret1 was expressed not only in the fat body but also in muscle and testis. These findings suggest that insect TRET1 is responsible for the release of trehalose from the fat body and the incorporation of trehalose into other tissues that require a carbon source, thereby regulating trehalose levels in the haemolymph.  相似文献   
99.
HIV-1 escape mutants are well known to be selected by immune pressure via HIV-1-specific cytotoxic T lymphocytes (CTLs) and neutralizing antibodies. The ability of the CTLs to suppress HIV-1 replication is assumed to be associated with the selection of escape mutants from the CTLs. Therefore, we first investigated the correlation between the ability of HLA-A*1101-restricted CTLs recognizing immunodominant epitopes in vitro and the selection of escape mutants. The result showed that there was no correlation between the ability of these CTLs to suppress HIV-1 replication in vitro and the appearance of escape mutants. The CTLs that had a strong ability to suppress HIV-1 replication in vitro but failed to select escape mutants expressed a higher level of PD-1 in vivo, whereas those that had a strong ability to suppress HIV-1 replication in vitro and selected escape mutants expressed a low level of PD-1. Ex vivo analysis of these CTLs revealed that the latter CTLs had a significantly stronger ability to recognize the epitope than the former ones. These results suggest that escape mutations are selected by HIV-1-specific CTLs that have a stronger ability to recognize HIV-1 in vivo but not in vitro.HIV-1-specific cytotoxic T lymphocytes (CTLs) have an important role in the control of HIV-1 replication during acute and chronic phases of an HIV-1 infection (5, 28, 33). On the other hand, HIV-1 can escape from the host immune system by various mechanisms. These may include the appearance of HIV-1 carrying escape mutations in its immunodominant CTL epitopes as well as Nef-mediated downregulation of HLA class I molecules. There is a growing body of evidence for the former mechanism, i.e., that CTLs targeting immunodominant HIV-1 epitopes select escape mutants in chronically HIV-1-infected individuals (18, 20, 36), whereas the latter mechanism was proved by demonstrating that HIV-1-specific CTLs fail to kill Nef-positive-HIV-1-infected CD4+ T cells but effectively kill Nef-defective-HIV-1-infected ones or that they suppress the replication of Nef-defective HIV-1 much more than that of Nef-positive HIV-1 (12, 13, 42, 45).It is speculated that HIV-1 immunodominant epitope-specific CTLs have the ability to suppress HIV-1 replication and effectively select escape mutants. However, the correlation between this ability of the CTLs and the appearance of escape mutants is still unclear, because it is not easy to evaluate the ability of HIV-1-specific CTLs to exert a strong immune pressure in vivo. To examine this ability, most previous studies measured the number of HIV-1-specific CTLs or CD8+ T cells and the CTL activity against target cells prepulsed with the epitope peptide or those infected with HIV-1 recombinant vaccinia virus (6, 7, 23, 46). However, the results obtained from such experiments do not reflect the ability of the CTLs to exert immune pressure in vivo. We and other groups previously utilized an assay to directly evaluate the ability of the CTLs to suppress HIV-1 replication in vitro (1, 17, 18, 42, 43). This assay may be better for evaluation of immune pressure by HIV-1-specific CTLs than other assays, because the ability of the CTLs to suppress HIV-1 replication is directly measured in cultures of HIV-1-infected CD4+ T cells incubated with HIV-1-specific CTL clones. But it still remains unknown whether this assay reflects immune pressure in vivo.In the present study, we investigated whether HIV-1-specific CTLs having a strong ability to suppress HIV-1 replication could positively select escape mutants. Since HLA-A*1101 is known to be an HLA allele relatively associated with a slow progression to AIDS (32), it is speculated that some HLA-A*1101-restricted CTLs would have a strong ability to suppress HIV-1 replication in vitro. Therefore, we first focused on 4 well-known HLA-A*1101-restricted CTL epitopes in the present study. We investigated the frequency of CTLs specific for these epitopes in chronically HIV-1-infected individuals, the ability of these CTLs to suppress HIV-1 replication in vitro, and whether the escape mutants were selected by the CTLs. Furthermore, we analyzed the expression of Programmed Death-1 (PD-1) on these CTLs ex vivo and antigen recognition of them.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号